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Biomimetic sensory feedback through peripheral nerve
stimulation improves dexterous use of a bionic hand
J. A. George1*†, D. T. Kluger1†, T. S. Davis2, S. M. Wendelken1, E. V. Okorokova3, Q. He3,
C. C. Duncan4, D. T. Hutchinson5, Z. C. Thumser6, D. T. Beckler6, P. D. Marasco6,
S. J. Bensmaia3, G. A. Clark1*

We describe use of a bidirectional neuromyoelectric prosthetic hand that conveys biomimetic sensory feedback.
Electromyographic recordings from residual armmuscles were decoded to provide independent and proportional
control of a six-DOFprosthetic handandwrist—theDEKA LUKEarm. Activation of contact sensors on theprosthesis
resulted in intraneural microstimulation of residual sensory nerve fibers through chronically implanted Utah
Slanted Electrode Arrays, thereby evoking tactile percepts on the phantom hand. With sensory feedback enabled,
the participant exhibited greater precision in grip force and was better able to handle fragile objects. With active
exploration, the participant was also able to distinguish between small and large objects and between soft and
hard ones. When the sensory feedback was biomimetic—designed to mimic natural sensory signals—the partic-
ipant was able to identify the objects significantly faster than with the use of traditional encoding algorithms that
depended on only the present stimulus intensity. Thus, artificial touch can be sculpted by patterning the sensory
feedback, and biologically inspired patterns elicit more interpretable and useful percepts.
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INTRODUCTION
State-of-the-art upper-limbprostheses have become capable ofmimick-
ing many of the movements and grip patterns of endogenous human
hands (1–3). Although these devices have the capabilities to replace
much of the motor function lost after hand amputation, the methods
for controlling and receiving feedback from these prosthetic limbs are
still primitive (4, 5). The advent of neuromuscular implant systems ca-
pable of recording efferent motor activity and stimulating afferent sen-
sory nerve fibers improves the transfer of sensorimotor information to
and from a user’s peripheral nervous system, paving the way for more
dexterous bionic hands (6–9).

Conveying sensory feedback through an electrical interface with
the peripheral nervous system has been shown to confer functional
benefits (9–16). However, demonstrations of these improvements
are limited, and the sensory encoding algorithms themselves are often
unsophisticated. The human hand is innervated by several types of
tactile nerve fibers that each respond to different aspects of skin defor-
mations. Manual interactions generally activate all of the fiber types,
and tactile percepts are shaped by complex spatiotemporal patterns of
activation across the different afferent populations (17, 18). One of the
notable features of the aggregate afferent activity is the massive phasic
bursts during the onset and offset of contact and the far weaker re-
sponse during maintained contact (19–22). Most extant sensory en-
coding mechanisms track sensor output (e.g., the absolute pressure,
force, or torque from a prosthetic device) by modulating stimulation
intensity and thus disregard this important and salient aspect of
natural sensory feedback (9, 10, 12, 23–29). To the extent that artifi-
cially induced sensory signals mimic natural ones, they are likely to
elicit more naturalistic percepts and confer greater dexterity to the
user (15, 30).

In the present study, we first demonstrate that closed-loop sensory
feedback improved performance on dexterous tasks and enabled sen-
sory discrimination during active manipulation of objects. We then
show that artificial sensory experiences were enriched when the stim-
ulation regimes were designed to mimic the natural patterns of neu-
ronal activation that are evoked during manual interactions with a
native hand. These results constitute an important step toward the de-
velopment of dexterous bionic hands and have broad implications for
neural interfaces and prosthetic devices.
RESULTS
We implanted oneUtah Slanted ElectrodeArray (USEA) in themedian
nerve and another in the ulnar nerve, plus eight electromyographic
recording leads (iEMGs) in the forearmmuscles of an individual with
a transradial amputation halfway between the wrist and elbow. The
participant used this neuromyoelectric interface to control and sense
through a state-of-the-art dexterous sensorized prosthetic hand and
wrist (LUKE arm, DEKA; Fig. 1). Control signals were obtained using
the filtered iEMG recordings as input to a modified Kalman filter
(29, 31). The participant was able to control all six DOFs of the pros-
thesis independently, proportionally, and simultaneously in real time,
achieving performance comparable with those of clinically available
prosthetics in the modified Box and Blocks test (fig. S1) (32)—a stan-
dard test of manual dexterity—and efficiency comparable with that of
able-bodied participants in a novel foraging task (fig. S2) (33). Record-
ings of muscle activation remained reliable over the entire duration of
the study (14 months). Using muscle recordings rather than neural
ones as control signals eliminates the problem of stimulation artifacts
and allows for uncompromised sensory feedback.

Electrical stimulation of the residual nerves evokes
sensations on the phantom hand
Electrical stimulation of the residual nerves through the chronically
implanted USEAs evoked localized sensations that were experienced
1 of 11
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on the phantomhand. The participant reported up to 119 sensory per-
cepts distributed over the hand and varying in their quality (Fig. 2 and
fig. S3). Asmight be expected given the known patterns of innervation
of the skin, a preponderance of percepts originated in the fingers and
particularly the fingertips. The quality of the percepts also varied;
some were described as “vibration” (36%), “pressure” (29%), or “tap-
ping” (3%), which were likely associated with activation of cutaneous
tactile nerve fibers; others were described as pain (16%), presumably
reflecting activation of nociceptive fibers; and a few were described as
“tightening” (12%) and joint movement (3%), presumably reflecting
activation of proprioceptive nerve fibers such as muscle afferents. Ac-
tivation of contact sensors on the prosthetic hand triggered stimula-
tion of individual USEA electrodes or groups of USEA electrodes with
congruent receptive fields. For example, when contact was made with
the index fingertip sensor, a current was delivered throughUSEA elec-
trodes with projection fields on the index fingertip of the phantom;
that way, when the prosthetic index fingertip made contact with an
object, the participant experienced a sensation on the index fingertip.

Sensory feedback improves grasping performance
The grip force required to grasp an object depends on its mass and on
the coefficient of friction between skin and object: Heavy and slippery
objects are gripped with more force than are light, high-friction ones
(34).With our native hands, we are exquisitely proficient at exerting just
enough pressure on an object to grasp it, an ability for which we rely on
the sense of touch (34).

Some tests of manual dexterity do not benefit from tactile feedback.
For example, performance on the modified Box and Blocks test is only
slightly improvedwith touch because visual feedback is available and no
penalty is incurred for exerting too much force on an object. However,
other tests ofmanual dexterity are highly dependent on tactile feedback.
In one such test, a participant moves an object from one location to
another, as in the modified Box and Blocks test (fig. S1). However,
the object is “fragile” and “breaks” if squeezed too hard (fig. S4) (35, 36).
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
The participant moved the object without breaking it significantly
more often with sensory feedback than without (32 of 40 times versus
22 of 40 times; Pearson’s c2 test, P = 0.017; Fig. 3) and did so more ra-
pidly (9.13 ± 0.44 s versus 11.14 ± 0.49 s per trial; t test,P< 0.001; Fig. 3).

Performanceof activities of daily living (ADLs)often involves dividing
attention between multiple simultaneous subtasks—e.g., holding a jar
while twisting off its lid—so sensory feedback that is attentionally
demanding is inappropriate (37). To testwhether the sensory feedback
conveyed throughnerve stimulationwas resistant to divided attention,
we had participants perform the fragile object test while counting
backward.We found that the feedback-induced boost in performance
was maintained with divided attention but only the effect on duration
remained statistically significant under this condition (5.91 ± 0.20 s
versus 7.68 ± 0.42 s; t test, P < 0.001; Fig. 3).

Another way to assess the impact of sensory feedback on object
interactions is to characterize the degree to which we exert a consistent
amount of force on an object upon repeated grasping (38). To test this
capability, we had the participant repeatedly grasp a load cell with the
prosthetic hand. Sensory feedback was provided on some experimental
blocks but not others. The participant’s grip performancewasmore pre-
cise with sensory feedback than without, as evidenced by less variable
grip force on six of eight objects (Fig. 4). Furthermore, sensory feedback
significantly reduced the coefficient of variation (ratio of grip precision
to grip force) across all objects [Fig. 4 and fig. S5 show the standardized
Grasping Relative Index of Performance (GRIP) for this test] (38).

Sensory feedback enables haptic perception
Whenwemanipulate objects, we acquire information about their shape,
size, and texture through sensory signals from our hands (39, 40). Hap-
tic perception relies on an interplay between exploratory movements
A B
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Fig. 1. Participant and sensorized bionic hand. A transradial amputee (A) had
two total USEAs (B) implanted, one each, into the residual median and ulnar nerves
of the arm. Activation of contact sensors on the DEKA LUKE arm (C) triggered stim-
ulation of individual USEA electrodes or groups of USEA electrodes so that the am-
putee felt a sensation on his phantom hand at the corresponding location. For
example, when contact was made with the index fingertip sensor, current was
delivered through USEA electrodes with projection fields on the phantom index
fingertip. Thus, when the prosthetic index fingertip made contact with an object,
the participant experienced a sensation on the index fingertip.
Fig. 2. Centroids of the projected fields for cutaneous percepts (circles) and
location of proprioceptive percepts (black arrows) evoked by stimulation
through individual USEA electrodes in the residual median or ulnar nerves.
A total of 119 sensory percepts were evoked (72% from median nerve) 2 weeks
after the implantation surgery. The quality of the evoked percepts varied across
electrodes: 37% vibration (red), 29% pressure (green), 16% pain (blue), 12% tight-
ening (orange), 3% movement (arrows), 3% tapping (yellow), and 1% buzzing
(black). A map of the complete projected fields can be found in fig. S3.
2 of 11
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and the sensory consequences of those movements (41). To assess the
degree to which the prosthesis could convey object information, we
developed a closed-loop sensorimotor task in which the participant
actively manipulated one of two objects with the prosthetic index finger
(fig. S6). Stimulation was at a fixed frequency and amplitude and was
delivered as long as contact with the object was maintained. On each
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
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trial, one of two objects was presented—a golf ball or a (larger) lacrosse
ball—and the participant’s taskwas to report the size of the object (small
versus large). Alternative sensory cues were reduced or eliminated by
having the prosthesis mounted externally on a table (rather than being
worn by the participant) and by having the participant wear an eye
mask and headphones. The participant was able to perform this task
almost perfectly with the sensory feedback, correctly reporting the size
on 31 of 32 object presentations (binomial test, P < 0.0001).

To further assess haptic perception, we developed a closed-loop
sensorimotor task in which the participant actively manipulated one
of two objects—a soft foam block or a hard plastic block—and dis-
criminated the compliance (soft versus hard; fig. S7). In this experiment,
the amplitude of electrical stimulation increased linearly with the
output of the sensor. The participant was able to distinguish between
the two objects significantly better than chance (60 of 80 trials; bino-
mial test, P < 0.0001) and did so after squeezing the object several
times (Fig. 5), highlighting the interplay between motor behavior
and sensory feedback.

Biomimetic peripheral nerve stimulation improves
object discrimination
In the studies described above, sensory feedback provided either a
contact signal or a signal proportional to the contact force. Although
both regimes of stimulation led to significant improvements in
closed-loop sensorimotor tasks, neither regime is liable to produce nat-
uralistic patterns of activation in the nerve. Interactions with objects are
characterized by a strong burst of activation at the onset and offset of
contact and much weaker activation during maintained contact (42).
This initial onset conveys important information about the shape of
the object (40). The aggregate response of tactile nerve fibers is
determined not only by the degree towhich the skin is indented but also
by the rate at which the skin is indented, and the latter component
dwarfs the former one.
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Fig. 4. Sensory feedback improves grip precision. (A) Forces (means ± SD) generated by the participant when grasping a load cell while viewing one of eight
different virtual objects. Sensory feedback improved grip precision, as evidenced by less variable grip force on six of eight objects. Without sensory feedback, the
participant erred on the side of caution and underestimated desired grip force for fragile objects (bread, eggs, and open water bottle). (B) Coefficient of variation
(means ± SEM) of grip force across all eight objects. Sensory feedback significantly reduced the coefficient of variation (i.e., the ratio of grip precision to grip force).
Asterisk (*) indicates different means (P < 0.05), and sharp (#) indicates different SDs (P < 0.05); n = 40 for each object.
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Fig. 3. Sensory feedback improves object manipulation. The participant’s task
was to move a fragile object that breaks if the grip force is too strong. With sen-
sory feedback, the participant moved the object more often without breaking
it and did so more rapidly (basic). With divided attention (distr.), the feedback-
induced boost in performance was maintained, but only the effect on duration
remained statistically significant. *P < 0.05, n = 80 for both basic and distr. cases.
Data show means ± SEM.
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We therefore sought to implement a sensory feedback algorithm
that incorporates this temporal property of natural tactile signals. As a
first-order approximation, we developed a sensory feedback algorithm
in which the intensity of stimulation was proportional not only to the
contact force but also to its rate of change. This first-order biomimetic
algorithm leads to stronger stimulation at the contact onset, when
the rate of change is highest to mimic the phasic bursts observed
in natural nerve activation during contact transients. To test this
simple biomimetic algorithm, we had the participant discriminate
the size and compliance of objects, and we compared his performance
with that using the standard sensory encoding algorithms (contact
tracking and force tracking). We found that the participant was able
to perform these tasks significantly faster with the biomimetic feedback
than with its nonbiomimetic counterparts. Biomimetic sensory
feedback improved response time by 24% for size discrimination
(11.78 ± 0.75 s versus 8.94 ± 0.79 s; t test, P < 0.05; Fig. 5) and by
44% for compliance discrimination (14.16 ± 1.05 s versus 7.91 ± 0.81 s;
t test, P < 0.005; fig. S7).

In the above implementation of biomimetic feedback, the peak
intensity of stimulation was higher than with nonbiomimetic feedback
because the overall charge was approximatelymatched. One possibility,
then, was that the improvement in performance with biomimetic
feedback was a consequence of the higher peak stimulation intensity.
Although a higher peak firing rate might itself be more biomimetic, im-
proved discrimination would not necessarily depend on differences in
temporal firing patterns between the biomimetic and nonbiomimetic
encoding schemes. To distinguish between these possibilities, we im-
plemented a version of the biomimetic algorithm such that the peak
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
stimulation intensity (pulse amplitude and frequency) wasmatched to
that of the nonbiomimetic algorithms. Evenwithmatched peak inten-
sity, the biomimetic feedback led to a 46% improvement in performance
(7.56 ± 1.08 s versus 4.64 ± 0.77 s; t test, P < 0.005; Fig. 5). Another
potential confound is that biomimetic algorithm might peak faster
than the nonbiomimetic ones, leading to faster performance. However,
the improvement in response time was on a longer time scale than the
shift in peak stimulation, so this effect was not a trivial consequence
of the timing of stimulation. Rather, it reflects an improvement in the
intuitiveness and informativeness of the artificial sensory signals,
which capture some of the essential temporal characteristics of natural
tactile signals.

The above results suggest that dynamics of the response evoked
through electrical stimulation—if it mimics a natural response—can
lead to more interpretable and useful sensory feedback. However, the
above biomimetic algorithm captured some aspects of the natural tactile
feedback—namely, the increase in sensitivity to contact transients—but
not others, borne out of the idiosyncratic properties of the different
classes of tactile nerve fibers and their respective innervation densities.
In light of this, we tested another sensory encoding algorithm that
sought to more faithfully mimic natural nerve activations. Briefly, this
algorithm is designed to reflect the measured sensitivity of populations
of nerve fibers to skin indentation and its two derivatives (rate and
acceleration) (19). With this second-order biomimetic feedback, the
participant identified object compliance 56% faster than with the tra-
ditional linear feedback (6.71 ± 1.47 s versus 2.93 ± 1.37 s; t test,P< 0.05;
Fig. 5). These results further demonstrate that biomimicry improves the
intuitiveness of the artificial sensory feedback.
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Fig. 5. Biomimetic sensory feedback improves performance on object discrimination tasks. (A) Example force (top; blue) and change in force (top; red) when the
participant actively manipulated a soft foam block. Note the repetitive waxes and wanes in force (e.g., at ~2 s), associated with the participant’s active exploration of the
object. Traditional linear encoding tracks force only (bottom; light blue), whereas the first-order biomimetic encoding incorporates the first derivative of force (bottom;
light red) and second-order biomimetic mimics the aggregate responses of tactile nerve fibers (bottom; light green). Linear algorithms were scaled (doubled) such that
peak stimulation amplitude and frequency were matched to the biomimetic algorithms; arrows highlight the time when peak stimulation occurs for the different
algorithms. (B) Biomimetic sensory feedback improved response time relative to its nonbiomimetic counterpart in size and compliance (comp.) discrimination tasks.
Performance across experiments varied because of changes in stimulation parameters, but biomimetic stimulation consistently outperformed nonbiomimetic stimulation.
*P < 0.05, n = 32 for binary versus biomimetic 1, n = 48 for linear versus biomimetic 1, and n = 32 for binary versus biomimetic 2. Data show means ± SEM.
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Participant successfully performed a variety of ADLs
An important concern in laboratory demonstrations of neuroprosthetic
control is whether tasks that are used to assess the performance of the
prosthesis are ecologically valid. With regard to the present study, will
improvements in performance with sensory feedback on laboratory
tasks translate to improved performance on ADLs? We evaluated this
by having the participant complete several ADLs over 3 days of testing.
With just the prosthesis alone or in conjunction with his intact hand, he
performed basic ADLs (feeding and dressing) (43), instrumental ADLs
(housework,meal preparation, and technology use) (44), andADLs that
he had found challenging without the prosthesis (loading a pillow into
a pillowcase, hammering, donning, and doffing a ring; Fig. 6). Improve-
ments are difficult to quantify withADLs, but the participant noted that
sensory feedback was particularly useful when manipulating fragile
objects (e.g., eggs and grapes) and spontaneously reported that he en-
joyed the sensation of “feeling” objects in his hand.
http://robotics.sciencem
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DISCUSSION
In the present study, we demonstrate that artificial sensory feedback
improves fine motor control and confers to the user the ability to sense
object properties through a bionic hand. Furthermore, these artificial
sensory experiences are enrichedwhen the sensory feedback is designed
to mimic the nervous system’s natural language. By capturing some of
the essential characteristics of natural tactile signals, biomimetic stimu-
lation improves the intuitiveness and informativeness of the sensory
feedback, as evidenced by swifter object discrimination capabilities.

The present results build on previous work, showing that sensory
feedback leads to improved grip and handling of fragile objects (10).
We extend these previous findings by showing that grasp force is
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
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achieved faster and more accurately and that fragile objects are trans-
ferred faster with sensory feedback than without. These improvements
are augmented when the sensory feedback is biomimetic. Although
previous studies have demonstrated that object properties can be sensed
through a prosthetic hand (12), we extend these previous findings to a
different sensorimotor task—compliance discrimination—and directly
demonstrate the improvement of biomimetic feedback relative to its
nonbiomimetic counterpart. In this respect, our work is consistent with
a recent study, showing that biomimetic stimulation leads to more
naturalistic percepts, leads to greater embodiment, and improves
performance on object manipulation tasks (30). In the present study,
we extend these previous findings to a new technology and a new task,
an important replication of the benefits of sensory feedback and bio-
mimicry, given that the relevant studies thus far have involved a single
participant (12, 13, 15, 30, 45).

Amputees have expressed a desire for sensory feedback to reduce
their dependence on visual feedback (37). The ability to feel grip force
while grasping and holding objects is the most important aspect of
sensory feedback for amputees (46). The sensory feedback provided
here allowed the participant to perform object discrimination tasks
without visual or auditory feedback and enabled the participant to
exert grip forces more precisely.

Ideally, sensory peripheral nerve interfaces and encoding algorithms
would activate each afferent nerve fiber selectively and independently, so
as to replicate the spatiotemporal pattern of neural discharges that would
be transmitted from an intact hand. The ability of different USEA elec-
trodes to activate a large number of different percepts (Fig. 2) increases
the ability to provide more biomimetic sensory input. The present
experiments used relatively simple receptive fields and sensorimotor tasks
to study the importance of temporal aspects of sensory encoding at a pop-
ulation level in isolation and hence did not fully explore these capabilities.
However, such capabilitiesmay prove increasingly useful with richer sen-
sorimotor tasks and with the advent of prosthetic hands with greater
numbers and varieties of sensors.

In addition to sensorimotor functional improvements, closed-loop
sensorized prostheses often bringpsychological benefits (9, 10, 29, 47–49).
The same participant in this study reported decreased phantom pain
and increased embodiment of the prosthesis as a result of the sensory
feedback (29). After the study, the participant highlighted the emotional
impact of artificial touchwhen he used the bionic hand to shake hands
with his wife and felt her touch through it for the first time. The func-
tional and emotional benefits of dexterous motor control and bio-
mimetic sensory feedback are likely to be further enhanced with
long-term use, and efforts are underway to develop a portable take-
home system (50).
MATERIALS AND METHODS
Study design
We considered the participant for this chronic implant study due to the
transradial level of his amputation, his willingness to volunteer, and
overall good health. Termination of the study and explantation of the
electrodes were voluntary or would occur if the implants were causing a
health risk as indicated by a qualified physician or at 14months after the
implant date. Previous studies from this group (6, 51, 52) were limited in
duration (less than 5weeks) for safety considerations; because no health
risks emerged from these previous studies, the University of Utah Insti-
tutional Review Board and the participant agreed to a 14-month dura-
tion for this study.
A B

C D

Fig. 6. Sensory feedback supports ADLs. The participant performed several
one- and two-handed ADLs while using the sensorized prosthesis, including
moving an egg (A), picking grapes (B), texting on his phone (C), and shaking hands
with his wife (D).
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The experiments performed in this study were completed in 2- to
3-hour sessions, one to three times a week, across the 14-month du-
ration of the study. The number of replicates per experiment was
matched to that of previous studies involving fragile object manipula-
tion (10), object discrimination (12), and the Grasping Relative Index of
Performance (38).Datawere considered outliers if they fell outside three
SDs from the mean (38).

Human participant and implanted devices
A male left transradial amputee, whose amputation occurred 13 years
before the onset of the study, underwent surgeries and performed
experiments with informed consent and under protocols approved by
the University of Utah Institutional Review Board and the Department
of the Navy Human Resources Protection Program. Under general
anesthesia, two 100-electrode USEAs were implanted in the median,
and ulnar nerves of the residual limb, proximal to the elbow, and eight
iEMGs, with four electrical contacts each, were implanted in the upper
forearm with attempted targeting of each lead to different lower-arm
extensor or flexor muscles. Additional information and figures regard-
ing the devices and implantation procedure can be found in the Supple-
mentary Materials and (29), which reports on the same participant in
this study.

Decoding motor intent
Motor intent was decoded from residual forearm muscles recorded
at 1 kHz, while the participant actively mimicked prosthetic hand
movements, as previously reported in (6, 29, 31). Every 33 ms, the
mean absolute value (MAV) over a 300-ms window was calculated
for the 32 iEMG electrodes and the 496 possible differential pairs. A
total of 528 features were generated (MAV for 32 single-ended and
496 differential pairs). To save computational time and reduce potential
overfitting, the 528 features were then down-selected to the best 48 fea-
tures using a Gram-Schmidt channel-section algorithm (53). These
48 features served as an input to a modified Kalman filter (MKF)–
based decode that uses customizable, non-unity thresholds and gains
(29, 54). The output of theMKFwas used to directly control the position
or velocity of the six DOFs of the prosthesis. The ability to proportion-
ally control position or velocity was toggled on a DOF-by-DOF basis.
More information regarding the prosthetic control algorithm can be
found in (54) and the Supplementary Materials.

Mapping of USEA-evoked percepts
Electrical stimulation was delivered via USEAs using the Ripple
Neuro LLC Grapevine System with Micro2+Stim front ends. All stim-
ulationwas delivered as biphasic, cathodic-first pulses, with 200- to 320-ms
phase durations and a 100-ms interphase duration. The stimulation fre-
quency varied between 10 and 500Hz, and stimulation amplitudeswere
in the range of 1 to 100 mA.

USEA stimulation threshold maps were collected roughly every 4 to
8 weeks, during which each electrode of the USEAs was stimulated in
isolation at increasing amplitudes. Electrodes that evoked a sensory
percept at less than 100 mAwere noted, and the location, quality, and
intensity of each percept were documented as well as the threshold
amplitude at which the percept was evoked. For these mappings,
stimulation was delivered in a pulsed fashion with a 500-ms train
of 100-Hz stimulation being delivered every second. Additional de-
scriptions for electrode mapping (6) and the stimulation parameters
we used (29) exist elsewhere. Sensory percepts were stable over the
course of these experiments and persisted 14 months after the implant
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
(fig. S8). More information regarding the stability of the USEA-evoked
percepts is available in the Supplementary Materials.

Encoding sensory feedback
Stimulation through a single USEA electrode typically evoked a single
percept with a distinct receptive field (e.g., sensations were isolated to
only the index finger, or only the middle finger, but not both fingers).
Occasionally, stimulation of a single USEA electrode would evoke
multiple percepts in distinct receptive fields (e.g., stimulation of a single
USEA electrode evoked sensations on both the index and middle
fingers); these electrodes with multiple distinct percepts were not used
for real-time sensory feedback.

The distinctly evoked percepts were then assigned to a single contact
(cutaneous) or motor (proprioceptive) sensor on the prosthesis with a
corresponding receptive field. For example, if stimulation through
USEA electrode X evoked a pressure-like percept on the middle finger
and if separately stimulating through USEA electrode Y also evoked
a percept on the middle finger, then both electrodes X and Y would
be assigned to the middle finger contact sensor on the prosthesis. We
stimulated between 1 and 12 USEA electrodes that had overlapping
receptive fields with a given sensor on the prosthesis (Table 1). Because
of the time-intensive nature of assigning all electrodes, a subset of sen-
sors on the prosthesis were used for each task; the specific sensors used
for a particular task are detailed in the corresponding section for that
task. Activation of sensors resulted in biphasic, charge-balanced stim-
ulation (200- or 320-ms phase durations, cathodic first, with a 100-ms
interphase duration). We encoded percept intensity by modulating
the frequency or current amplitude of stimulation with either linear
or biomimetic encoding algorithms (see next section). For all encod-
ing algorithms, the intensity of the sensation increased with increas-
ing stimulation amplitude and frequency, but there were no reported
changes in perceptive field location or sensory modality.

Stimulation parameters were adjusted at the start of each exper-
imental session to maximize the naturalism and perceived intensity
range of the stimulation. To the extent possible, the participant’s sensory
experience (e.g., perceived intensity range, perceptive field, etc.) was
kept consistent across days. Stimulation typically produced natural-
feeling pressure sensations on the palmar aspects of the hand. The exact
parameters (electrodes, encoding algorithm, amplitude, frequency, and
pulse duration) used for each task are summarized in Table 1.

Sensory encoding algorithms
For binary sensory encoding, the stimulation was fixed at the specified
amplitude (100 mA, 320 mS) and frequency (100 Hz) as long as any
contact was made. For traditional, linear sensory encoding, the stimu-
lation frequency and amplitude increased solely on the basis of the ab-
solute sensor value. For biomimetic 1 sensory encoding, the stimulation
frequency and amplitude increased on the basis of the absolute sensor
value and on positive rate of change of the sensor; stimulation tracked
the current sensor value plus 10 times any positive finite difference be-
tween the current and previous sensor value. For scaled, traditional,
linear sensory feedback, the stimulation frequency and amplitude were
multiplied by a constant factor (=2) such that the range was comparable
with that of the biomimetic stimulation (Fig. 5). Stimulation ampli-
tude and frequency increased together over their respective ranges
(see Tables 1 and 2).

The biomimetic 2 sensory encoding algorithm was developed from
recordings of nonhuman primate cutaneous afferents in response to
physical contactwith the fingertip (19). This computationally inexpensive
6 of 11
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model describes the instantaneous firing rate (i.e., stimulation frequency)
of the afferent population using the contact stimulus position, velocity,
and acceleration. Similar to other biomimetic algorithms (30), the bio-
mimetic 2 sensory encoding algorithm leverages TouchSim (55) to
simulate the responses of all tactile fibers to any spatiotemporal defor-
mation of the skin of the hand. This model—dubbed TouchMime—
provides a more computationally efficient approach to the aggregate
response of the nerve to time-varying pressure applied to the fingertip,
allowing for high-accuracy biomimetic sensory encoding in real time.
In addition, the parameters of the model were tuned for the sampling
rate of theDEKALUKE arm sensors (30Hz) and forUSEA stimulation
(i.e., intrafascicular stimulation at 30 Hz) at a fixed, suprathreshold
stimulation amplitude, further improving the accuracy of the bio-
mimetic encoding (19). Additional details regarding themodel develop-
ment and validation can be found in (19).

Bothmodels presented here are distinct from those used in (30). The
biomimetic 1 algorithm concurrently modulates frequency and ampli-
tude most closely replicating the responses of populations of slowly
adapting type 1 (SA1) and rapidly adapting (RA) fibers. The biomimetic
2 algorithm provides amore faithful replication of a complete aggregate
nerve response, keeping the population size constant (fixed stimulation
amplitude) and mimicking the aggregate firing rate of SA1, RA, and
Pacinian fibers within that population of the nerve. Both models
are computationally efficient, allowing for real-time biomimetic sensory
encoding. Analytic formulations for each encoding algorithm are
provided in Table 2.

Wedid not attempt tomeasure the intuitiveness or naturalismof the
sensory encoding algorithms, nor did we track the participant’s ability
to interpret this feedback. Experimental sessionswere kept under 2 hours,
and no learning effects were observed in this time frame.
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
Fragile object test
The fragile object test [originally introduced in (35)] has been used as a
variant of the modified Box and Blocks test (36) to show the benefits of
sensory feedback (14, 30, 36). Our implementation of this test differed
from its predecessors in that the object was much heavier and the ratio
between the weight and breaking force wasmuch smaller, rendering the
overall task more difficult. In (36), the fragile object weighed 8 g and
broke if a force of 10.7 ± 1 N was applied to it (ratio of 1.34 N/g),
and in (14, 30), the object weighed ~80 g and broke with a force of
1.23 ± 0.02 N (ratio of 0.15 N/g). In contrast, the object used in this
study weighed 630.57 g and broke at 14.79 ± 0.34 N (ratio of 0.02 N/g).

The participant used only thumb abduction/adduction, and artificial
sensory feedbackwas provided on the basis of the thumb contact sensor.
Trial failure was defined as “breaking” the object, which occurred when
the compression force exceeded 14.79 ± 0.34 N, or an inability to move
the object in 30 s. Trial success was defined as a trial in which the par-
ticipant lifted and placed the unbroken object within an adjacent circle
on the table (~10 cmaway)within 30 s. In half of the sets, the participant
was intentionally distracted by having to count backward by twos from
a random even number between 50 and 100.

A single trial was performed once every minute. A single exper-
imental block consisted of eight trials with or without artificial sen-
sory feedback. The participant completed five experimental blocks
with and without sensory feedback for both the basic and distracted
conditions. The experimental blocks were counterbalanced to reduce
order effects. Under all conditions, the participant was able to use
audiovisual feedback to help locate and grasp the object, as well as to
identify when the object broke.

Statistical analyses were run separately for the basic and distracted
conditions. A 50% binomial test was used to determine whether
Table 1. Stimulation parameters used for each task.
Task
 Sensory encoding algorithm(s)
 USEA electrodes
 Amplitude
(mA)
Frequency
(Hz)
Duration
(ms)
Fragile object (first set) T
raditional linear
 2, 5, 6, 9, 10, 12, 15, 16, 20, 25
 80–100
 10–100
 200
Fragile object (second set) T
raditional linear 2
, 5, 6, 9, 10, 12, 15, 16, 20, 23, 25
 70–100
 10–100
 200
GRIP B
iomimetic 1
 5, 6, 9, 10, 12, 15, 16, 20, 23
 80–95
 10–200
 320
Size discrimination B
iomimetic 1
 2, 5, 6, 9, 10, 12, 15, 16, 20, 23
 80–95
 10–200
 200
Size discrimination B
inary 5
, 6, 9, 10, 12, 15, 16, 20, 25, 26
 100
 100
 320
Compliance discrimination (first set) B
iomimetic 1 versus traditional linear
 2, 5, 6, 9, 10, 12, 15, 16, 20, 23
 90–100
 10–200
 200
Compliance discrimination (second
set) B
iomimetic 1 versus traditional linear
 2, 5, 6, 9, 10, 12, 15, 16, 20, 23
 80–95
 10–200
 320
Compliance discrimination (first set) B
iomimetic 1 versus scaled traditional
linear
 2, 5, 6, 9, 10, 12, 15, 16, 20, 23
 80–95
 10–200
 320
Compliance discrimination (second
set)

B
iomimetic 1 versus scaled traditional
linear 5
, 6, 9, 10, 12, 15, 16, 20, 23, 25, 26
 80–100
 10–200
 320
Compliance discrimination B
iomimetic 2 versus scaled traditional
linear 5
, 6, 9, 10, 12, 15, 16, 20, 23, 25, 26
 70
 10–400
 320
ADL (first set) T
raditional linear
 23, 26, 33, 41, 42, 47, 63
 70–100
 10–100
 200
ADL (second set) T
raditional linear
 23, 26, 27, 33, 34
 60–100
 100
 200
ADL (third set) T
raditional linear
 9, 10, 20
 80–100
 10–100
 200
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performance was significantly greater than chance alone. For compar-
ison of completion time for the successful trials, response times showed
no deviations from normality (Anderson-Darling, Jarque-Bera, and
Lilliefors tests). Unpaired t tests (unequal sample size due to different
success rates) were then used to compare completion times.

Object discrimination tasks
For size discrimination, the participant had to distinguish between a
“large” lacrosse ball and a “small” golf ball (fig. S6). The two objectswere
chosen so that they represented real-world interactions, minimized dif-
ferences in compliance, and maximized differences in size while still
requiring some degree of active flexion to make contact. Relative to the
index finger’s full range of motion, the large object required a 19% de-
crease in joint angle to make contact, and the small object required a
49% decrease. Response time was measured from the start of the trial
to when the participant verbally reported the object’s size.

For compliance discrimination, the participant had to distinguish
between a “soft” foam block and a “hard” plastic block (fig. S7). The soft
blockwas cut tomatch the size of the hard block so that stimulation due
to initial contact occurred at the same degree of index flexion. Response
time was measured from the start of stimulation (i.e., measurable con-
tact was made with the object and the participant felt the object) to the
time when the participant verbally reported the object’s compliance.
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
We did not attempt to quantify how many levels of size and com-
pliance the participant was able to discriminate. With traditional linear
feedback, the just-noticeable difference of the neural stimulation would
bind the discrimination capabilities. Instead, we focused on quanti-
fying improvements in the intuitiveness of the sensory feedback
(measured by response time) when biomimetic stimulation regimes
are used.

For both, the output of the modified Kalman filter was used to
directly control the position of the index finger. Position control (i.e.,
postural control) provided improved performance relative to velocity
control (fig. S6), which is consistent with the natural encoding
schemes of the hand (56). The participant received cutaneous sensory
feedback from the index contact sensor; proprioceptive sensory feedback
was not provided, although endogenous proprioception of residual
forearm muscles and efference copy may have been present. The par-
ticipant was blindfolded and wore headphones, and the physical pros-
thesis was detached from his residual limb, so that external cues about
the object were eliminated.

A single trial was performed once every minute. For each trial, the
participant was given 30 s to complete the task. A single experimental
block consisted of eight trials using a single algorithm. The participant
completed two experimental blocks for each size discrimination algorithm
and two to six experimental blocks for each compliance discrimination
algorithm. The order of the objects was pseudorandomized such that
equal numbers of both appeared in the experimental block. The exper-
imental blocks were counterbalanced to reduce order effects.

Statistical analyses were run separately for each algorithm com-
parison. Because of limited time with the participant, direct compar-
isons were limited to biomimetic 1 versus traditional linear, biomimetic
1 versus scaled traditional linear, and biomimetic 2 versus scaled tradi-
tional linear. A 50% binomial test was used to determine whether
performance was significantly greater than chance alone. For algorithm
comparisons, response times showed no deviations from normality
(Anderson-Darling, Jarque-Bera, and Lilliefors tests). Paired t tests were
then used for these comparisons on a trial-by-trial basis to control for
order effects and sensory adaptation (57). Statistical analysis of response
times with biomimetic and nonbiomimetic encoding algorithms was
confined to algorithms using the same stimulation parameters on the
Table 2. Sensory encoding algorithms. Ft, frequency at time t; At, amplitude at time t; ct, normalized contact value at time t; vt, velocity at time t; at, acceleration
at time t; min, minimum value; max, maximum value. Note that for all algorithms, sensory feedback is off and no stimulation occurs when ct = 0.
Sensory encoding algorithm(s)
 Analytic formulation
Binary
 Ft = Fmin
At = Amin
Traditional linear
 Ft = ct(Fmax − Fmin) + Fmin
At = ct(Amax − Amin) + Amin
Scaled traditional linear
 Ft = 2ct(Fmax − Fmin) + Fmin
At = 2ct(Amax − Amin) + Amin
Biomimetic 1
Ft ¼ ctðFmax � FminÞ þ Fmin; vt < 0
ð5vt þ ctÞ � ðFmax � FminÞ þ Fmin; vt≥0

�

At ¼ ctðAmax � AminÞ þ Amin; vt < 0
ð5vt þ ctÞ � ðAmax � AminÞ þ Amin; vt≥0

�

Biomimetic 2
 Ft = 186ct − 185ct−1 + 1559vt − 360vt−1 − 109vt−2 + 364at + 170at−1 − 3
At = Amin
Table 3. Motor control specifications.
DOF
 Range
 Precision
 Angle at rest
Thumb adduction/abduction
 0°–75°
 0.08° per bit
 22.5°
Thumb reposition/opposition
 50°–100°
 0.10° per bit
 80°
Index extend/flex
 0°–90°
 0.09° per bit
 27°
D3, D4, and D5 extend/flex
 0°–90°
 0.09° per bit
 27°
Wrist supinate/pronate −
 20°–175°
 0.29° per bit
 0°
Wrist extend/flex
 55°–55°
 0.11° per bit
 0°
−
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same day to avoid any variations in evoked sensations that may have
occurred across days.

Grasping Relative Index of Performance test
Adetailed descriptionof theGRIP test is reported elsewhere (38). Briefly,
a screen was placed between the participant’s line of sight to the pros-
thesis and the load cell to eliminate audiovisual cues from the prosthetic
hand. In contrast to the fragile object test, the GRIP test measures the
ability to modulate grip force without audiovisual feedback. The partic-
ipant was presented with pictures of one of eight objects (Fig. 4) and
instructed to grab the load cell with a force appropriate for gripping
the object shown in the picture. The participant grabbed each of
the eight objects 20 times without sensory feedback and 20 times with
sensory feedback. Outliers and trials with preemptive grasps were not
included in the analysis (38). Peak grasping forces showed no deviations
from normality (Anderson-Darling, Jarque-Bera, and Lilliefors tests).
Unpaired t tests were used to compare means, and Levene’s test was
used to compare SDs.

DEKA LUKE arm and ADLs
The DEKA LUKE arm, as used in this study, has 6 moveable DOFs
(Table 3), 6 position sensors, and 13 contact sensors (Table 4). The pros-
thetic is interfaced via a controller area network communication
protocol with 100-Hz update cycles. The accuracy of the movements
is dictated by the precision of themotor commands (Table 3). Formore
information regarding the accuracy of the control algorithm, see the
Supplementary Materials and (54).

The DEKA LUKE arm, in its transradial configuration, weighs
about 1.27 kg (58), slightly more than that of an intact human hand.
There are no temperature or pain sensors on the DEKA LUKE arm.
Furthermore, electrical stimulation of sensory afferents preferentially
activates larger diameter fibers first (59), making USEA-evoked pain
or temperature percepts uncommon.

The six position sensors correspond to the six moveable DOFs. The
13 contact sensors are made of nine torque sensors for contact applied
to the fingers and four force sensors for contact applied to the hand.
There is a torque sensor for digits D2 to D5 that detects torque applied
to the finger opposing flexion (e.g., during grasping of an object) and a
torque sensor for the lateral portion of D2 (e.g., during a key grip). D1
also has four additional torque sensors to detect contact due to adduc-
tion, abduction, reposition, or opposition.

ADLs were performed with the DEKA LUKE arm mounted to a
custom socket that fit to the residual limb of the participant. With only
George et al., Sci. Robot. 4, eaax2352 (2019) 24 July 2019
the prosthesis or with in conjunction with his intact hand, the partici-
pant performed basic ADLs (feeding and dressing) (43), instrumental
ADLs (housework, meal preparation, and technology use) (44), and
ADLs that he had found challenging without the prosthesis (loading a
pillow into a pillowcase, hammering, donning anddoffing a ring; Fig. 6).
All ADLs were performed with audiovisual feedback to best approx-
imate real-world use. Traditional linear sensory feedback was provided
because ADLs were performed before implementing the biomimetic
encoding algorithms. Because of limited patient time and an inability
to precisely quantify performance, ADLs were not repeated with bio-
mimetic sensory feedback.

Statistical analyses
All statistical analyses were run with significance as a = 0.05. Data
were checked for normality to ensure that the appropriate parame-
tric analysis or nonparametric equivalent was used. Subsequent pair-
wise analyses were corrected for multiple comparisons using the
Dunn-Šidák approach. All data are shown as means ± SEM, unless
otherwise stated.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/32/eaax2352/DC1
Stability of the USEA
Decoding intended movements with a modified Kalman filter
Surgical procedure
Fig. S1. Modified Box and Blocks test.
Fig. S2. Prosthesis efficiency and profitability task.
Fig. S3. Projected fields of electrically evoked sensations.
Fig. S4. Fragile object test.
Fig. S5. Grasping Relative Index of Performance task.
Fig. S6. Size discrimination task.
Fig. S7. Compliance discrimination task.
Fig. S8. Stability of USEA-evoked sensations.
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